Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(5): 141, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639786

RESUMEN

CONTEXT: In this study, we investigated the antioxidant potential of a novel ascorbic acid analog, DsD, assessing its interactions with the methylperoxyl (CH3OO·) radical in aqueous and lipid environments. Our focus was on understanding the acid-base equilibrium and how pH affects DsD's primary reaction mechanisms. Our findings indicate a marked preference for hydrogen atom transfer in lipid media, contrasting with sequential proton loss electron transfer (SPLET) in aqueous solutions. Remarkably, DsD's radical scavenging activity significantly outperforms ascorbic acid, being 4.05 and 9469.70 times more potent in polar and lipid contexts, respectively. This suggests DsD's superior efficacy as an antioxidant, potentially offering enhanced protection in biological systems. Additionally, we have demonstrated DsD's synthetic feasibility through a straightforward condensation reaction between ascorbic acid and 1,2-diaminoethane, followed by comprehensive physicochemical and spectroscopic characterization. METHODS: All computational analyses in this study were conducted using the Gaussian 09 software suite, employing the M05-2X functional and the 6-31 + G(d) basis set. Enthalpy calculations were executed under standard conditions (298.15 K and 1 atm), incorporating appropriate thermodynamic corrections. Rate constants were evaluated using transition state theory (TST), and the overall assessment of radical scavenging activity was guided by the Quantum Mechanics-based Test for Overall Radical Scavenging Activity (QMORSA) protocol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...